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Abstract—In modern datacenters, the effectiveness of end-to-
end congestion control (CC) is quickly diminishing with the rapid
bandwidth evolution. Per-hop flow control (FC) can react to
congestion more promptly. However, a coarse-grained FC can
result in Head-Of-Line (HOL) blocking. A fine-grained, per-flow
FC can eliminate HOL blocking caused by flow control, however,
it does not scale well. This paper presents Pyrrha, a scalable flow
control approach that provably eliminates HOL blocking while
using a minimum number of queues. In Pyrrha, flow control
first takes effect on the root of the congestion, i.e., the port
where congestion occurs. And then flows are controlled according
to their contributed congestion roots. A prototype of Pyrrha is
implemented on Tofino2 switches. Compared with state-of-the-
art approaches, the average FCT of uncongested flows is reduced
by 42%-98%, and 99th-tail latency can be 1.6×-215× lower,
without compromising the performance of congested flows.

Index Terms—Data center network, congestion management,
flow control.

I. INTRODUCTION

G IVEN the increasingly stringent performance require-
ments on datacenter networks, avoiding congestion and

the resulting delays has become critical for many applications.
Indeed, measurement studies show that congestion events
are frequent in today’s datacenters, e.g., bursty key-value
stores [1], [2], web search services with massive queries

Received 20 November 2024; revised 27 July 2025; accepted 16 November
2025; approved by IEEE TRANSACTIONS ON NETWORKING Editor R. La.
Date of publication 10 December 2025; date of current version 8 January 2026.
This work was supported in part by the National Key Research and Devel-
opment Program of China under Grant 2024YFB2906700; in part by NSF
China under Grant 62325205, Grant 62172276, Grant 62441236, and Grant
62172204; and in part by the Postgraduate Research and Practice Innovation
Program of Jiangsu Province under Grant KYCX25 0310. (Corresponding
author: Peirui Cao.)

Zhaochen Zhang, Kexin Liu, Peirui Cao, Chang Liu, Yizhi Wang,
Qingyue Wang, Wei Chen, Xiaoliang Wang, Jiaqi Zheng, Wanchun Dou,
Guihai Chen, and Chen Tian are with the State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing 210023, China (e-mail:
caopeirui@nju.edu.cn).

Vamsi Addanki and Stefan Schmid are with TU Berlin, 10623 Berlin,
Germany.

Wenhao Sun, Tao Wu, Ke Meng, Fei Chen, Weiguang Wang, and Bingyang
Liu are with Huawei, Nanjing 210012, China.

Hao Yin is with Tsinghua University, Beijing 100084, China.
Fu Xiao is with Nanjing University of Posts and Telecommunications,

Nanjing 210003, China.
Digital Object Identifier 10.1109/TON.2025.3636161

[3], and data-parallel/machine-learning systems with parti-
tion/aggregation traffic patterns [4], [5], [6], [7], [8], [9], [10],
[11]. Generally, congestion occurs at an output port when the
arrival rate of traffic exceeds its link bandwidth. Queues build
up at congested ports. With an inflated queue, flows could
endure a long queuing delay or even face packet loss, hence
flows’ completion times (FCT) can be prolonged [3], [12].

State-of-the-art approaches to handle congestion is end-to-
end congestion control (CC) [3], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23]. Congestion can be
detected by senders when congestion signals are sent back or
feedback delay is observed. Usually, it costs senders at least
one Round-Trip Time (RTT) to be aware of the congestion,
and then senders may take several RTTs to converge to
an appropriate transmission rate. In modern datacenters, the
effectiveness of end-to-end CC is quickly diminishing with
the rapid bandwidth evolution [24], [25], [26], [27](§ II-A).

With the increasing link speed and performance require-
ments of datacenter networks, an intriguing and emerging
alternative is per-hop flow control (FC), which can react
to congestion much more promptly. It suppresses the trans-
mission of the upstream entity before overwhelming the
downstream queue, which avoids a large buffer occupancy.
Generally, traffic in the same queue is controlled as a whole.
Once the queue length exceeds a given threshold, a pause
frame can be sent to pause the upstream entity [28], [29],
avoiding further buffer build-up where congestion occurs.
However, a coarse-grained flow control might spread the
congestion to the whole network, inducing Head-Of-Line
(HOL) blocking, and hurting the performance of victim flows
[30], [31], [32], [33]. Here HOL blocking refers to flows
being paused innocently (II-B). A naı̈ve approach to eliminate
HOL blocking could be to isolate each flow into different
queues and control each of them separately. However, such
a per-flow granularity flow control is not scalable since the
hardware resources of switches are limited. State-of-the-art
flow control approaches hence aim at reducing the number
of queues required by compromising the granularity of iso-
lation [24]. Thus, the HOL blocking can not be eliminated
entirely (II-C).

This paper explores how to eliminate HOL blocking in
a scalable manner, i.e.c, minimizing the required number of
queues. We observe that when congestion occurs, flow control
first takes effect on the root of the congestion, i.e.c, the port
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where congestion occurs. Then several congestion hotspots
(i.e.c, output port with buffer build-up) can appear along the
back pressure path of flow control. These involved hotspots
form a congestion tree, where the root of the tree is the
root of the congestion. Simply controlling the transmission of
flows based on hotspots could induce HOL blocking. Instead,
if we separately control the transmission of flows according
to the congestion root they participate in, flows will not be
paused innocently. As the number of concurrent congestion
roots observed on each port is moderate, only a reasonably
small number of queues on each port are required for traffic
isolation in each switch [34].

Based on these insights, this paper presents Pyrrha, a
congestion-root-based per-hop flow control protocol (III). In
Pyrrha, each switch maintains a snapshot of the congestion
status of the downstream network. Flows that would pass
through the same congestion root in their downstream paths
could be pushed into a dedicated congestion queue locally in
each upstream switch. Then, flows passing through different
congestion roots can be controlled separately as soon as
possible. Pyrrha solves a set of challenges.
• How to identify a hotspot’s role? When congestion

occurs, multiple congestion roots may be claimed in
succession. This could occur when an upstream con-
gestion hotspot claims itself root while its downstream
hotspot disagrees, and vice versa. With a local view,
it is hard to tell which root is the exact root in the
upcoming congestion. Intuitively, given the behavior of
flow control, congestion roots are always locate on the
most downstream ports that flows pass through. Inspired
by the root-selection procedure of classic spanning tree
algorithms [35], [36], Pyrrha employs a distributed self-
stabilizing merge mechanism. A port can claim itself
a self-nominated congestion root independently when it
detects its queue buildup for the first time. It then abdi-
cates its claim in favor of a self-nominated downstream
root if (part of) its flows pass through the downstream
claimer. Quickly, participating hotspots can converge
to a congestion tree. Naturally, the congestion root is
detected. (§ IV-A).

• How to identify a congested flow upon its arrival?
For each arriving flow to a switch, its entire following
path should be deterministic to the switch to identify a
congested flow. Inspired by recent industrial path control
practice [37], [38], Pyrrha proposes a hash-function-
aware design for switches. Every switch can determine
the path that a flow will take. With that information,
the switch could match the path against the congestion
status snapshot of the downstream network to determine
whether it is a congested flow (§ IV-B).

• How to handle events-tangling scenarios? Congestion
trees could overlap with each other which could result
in a congested flow traversing several congestion roots.
Besides, the congestion root in networks may vary
with transient bursty traffic. Without careful scheduling
among congestion queues, such flows could be mistak-
enly paused/resumed or delivered out-of-order. Pyrrha
proposes a resource-efficient hierarchical queue struc-
ture corresponding to the physical topology. The design
ensures both correct flow control semantic and in-order
delivery even in highly dynamic scenarios (§ IV-C).

A framework is constructed for analyzing egress-based flow
control protocols. We analytically prove that Pyrrha is a HOL-

blocking-free per-hop flow control protocol with the minimum
queue requirements (§ VI). Moreover, we demonstrate Pyrrha
is deadlock-free in scenarios where other per-hop flow control
protocols fail (§ VII).

A prototype of Pyrrha is implemented on Tofino2 [39].
Testbed evaluations and large-scale NS-3 simulations have
been performed. We compare Pyrrha with existing flow control
protocols (e.g., Priority Flow Control (PFC) [40], and BFC
[24]). And we also incorporate Pyrrha with existing congestion
control protocols (e.g., DCQCN [13], TIMELY [14], and
HPCC [12]). We find that the average FCT of uncongested
flows is reduced by 42.8%-98.2%, and 99th-tail latency can
be 1.6×-215× lower, without compromising the performance
of congested flows. In addition, Pyrrha reduces the maximum
buffer occupancy by up to 1.8×-6.2× (§ VIII). This work does
not raise any ethical issues.

II. BACKGROUND AND MOTIVATION

A. CC Is Falling and FC Is Rising

A variety of datacenter applications produce bursty traffic,
which can result in different types of congestion, e.g., incast,
and load imbalance. To handle congestion, existing efforts
focus on developing end-to-end congestion control (CC). CC
can be classified into reactive and proactive. With reactive CC,
congestion can be detected by switches (e.g., ECN in DCTCP
[3] and DCQCN [13], INT measurements in HPCC [12], PINT
[15], PowerTCP [20] and Poseidon [22]) or end-hosts (e.g.,
Timely [14], Swift [16], and On-Ramp [17]). After receiving
congestion signals or if packet delays are observed, senders
adjust the transmission rate. It may cost a flow several RTTs
to converge to an appropriate rate even in a stable network
condition. With proactive CC, bandwidth is allocated before
the transmission (e.g., ExpressPass [23], [41], Homa [42],
NDP [43], Aeolus [25], and pHost [44]). However, whether
to transmit in the first RTT is a dilemma, and proactive CC
either wastes the first RTT or risks reintroducing congestion.
Recently there are CCs [21], [45] which detect congestion at
sub-RTT by leveraging switches to send back control frames
directly. However, they cannot quickly react to congestion
especially when congestion occurs at the last hop (e.g., incast).

Several trends. The control loop of CC is too long to handle
transient congestion, given the fast evolution of datacenter
networks: (i) The high port bandwidth allows to send out
more flows within the first RTT, even before congestion control
could step in [24] and [25]. Transient bursty traffic results in a
large buffer occupancy and at the same time mislead the rate
adjustment of CC. (ii) The buffer size cannot catch up with
the increased speed of its high bandwidth per port [24], [27].
It becomes harder for switches to buffer transient congestion
and wait for end-to-end CC’s intervention. (iii) The growing
scale of datacenter networks and the emerging workloads (e.g.,
distributed training) lead to more bursty traffic (e.g., a larger
scale incast) [26], [46], [47].

Our vision. To handle bursty traffic, per-hop FC protocols
should step in. As shown in Figure 1, we propose a labor
division between CC and FC:
• (i) Per-hop FC handles transient congestion. A switch

can control the traffic transmission quickly by per-hop
flow control frames. It is in a unique position to quickly
manage flows that have already been injected into the
network to avoid performance downgrades.
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Fig. 1. Our vision of labor division between CC/FC.

• (ii) CC takes its part to handle persistent conges-
tion. CC can adjust the flow rates to increase/decrease
the forthcoming traffic injection into the network when
congestion occurs and to handle fairness issues.

B. Hol Blocking Problem of Simple FC
In RoCEv2 [28], PFC [40] ensures that the buffer does not

overflow. PFC pauses the upstream entity at a per-port or per-
priority-class queue granularity when the ingress queue length
exceeds a given threshold. Further, when the upstream ingress
queue exceeds the threshold, a pause frame will be sent to its
upstream entities.

However, the intervention of PFC could spread conges-
tion. When PFC is applied, flows that do not contribute to
downstream congestion could be paused when they share the
same queue with congested flows. The congestion scope can
spread from congested ports to piles of innocent ports. Hence,
it could downgrade the performance of uncongested flows.
We define the above congestion spreading phenomenon as
the HOL blocking caused by flow control, i.e.c, a flow is
paused innocently by the congested port that it does not pass
through. HOL blocking could cause a throughput downgrade.
More severely, PFC is vulnerable to deadlock with routing
loops [30], [31], [32], [33].

Typical incast workloads.To demonstrate the HOL block-
ing problem, we conduct a simulation where incast flows are
mixed with non-incast flows. 720-to-1 incast flows are gen-
erated with an average size of four Bandwidth-Delay Product
(BDP) and non-incast flows are generated with a load of 0.8
following the Poisson arrival process (setting details in § VIII).
Figure 2(a) depicts the real-time throughput. To make it more
clear, we use vulnerable flows to denote uncongested flows
sharing paths with congested flows in the remainder of the
paper since they are more likely to be hurt by congested flows.
Other uncongested flows are denoted as background flows.
Hence, the throughput of vulnerable flows is severely hurt
since they are paused by downstream switches with congested
flows as a whole, leading to a large queuing delay. Besides,
since a PFC pause frame storm occurs, congestion is spread
to the whole network. Consequently, background flows suffer
a throughput downgrade from 1ms to 4ms.

MoE workloads. We investigate the performance of Pyrrha
under the traffic of a popular type of pre-trained large language
model called Mixture-of-Expert (MoE). According to [46], the
traffic pattern can be characterized by an imbalanced all-to-all
where a significant portion of the traffic is sent to a few ‘hot’
experts. Owning to the synchronized nature of the training
process, the traffic exhibits a periodic on-off pattern [47], [48].
Following [47], two groups of periodic traffic are generated.

Figure 3 shows the performance of flows with collided
phase, i.e.c, where their phase overlaps (the results of the

interleaved phase are detailed in our conference paper [49]).
In the case of DCQCN+PFC, two groups of all-to-all suffer
from HOL-blocking as they compete for bandwidth, which in
turn triggers PFC. The peak bandwidth lasts for approximately
1 ms during which non-hot experts complete their traffic
reception, followed by hot experts continue receiving their
traffic. The throughput of the all-to-all-1 group is notably
suppressed, even dropping to zero upon the arrival of the
all-to-all-2 group. Once a portion of the all-to-all-2 flows
finishes, all-to-all-1 begins to grasp some of the bandwidth,
as indicated by the red rectangle in the figure. While for
DCQCN+Pyrrha, benefiting from the rapid reaction to the
congestion, two groups of flows do not disturb each other,
accelerating the tail latency by a factor of 1.46.

C. State-of-the-Art Flow Control Is Flawed
To overcome the HOL blocking problem caused by coarse-

grained control on queues, a naı̈ve scheme is per-flow queue
FC scheme. Figure 2(b) demonstrates the simulation results
under the same settings as in Figure 2(a) when the switch
assigns a dedicated queue to each flow passing through it.
Vulnerable and background flows fully utilize the link, at the
same time the throughput of incast flows does not degrade.
However, tens of thousands of flows can be observed on ports
[50]. Hence a per-flow granularity scheme is non-scalable.

Existing flow control approaches try to reduce the number
of queues by compromising the isolation granularity.

Destination-based flow control. This line of work tries to
isolate congestion by separating flows transmitting to different
destinations. Revisiting super-computing literature decades
ago, per-destination Virtual Output Queues (VOQs) [51], [52],
[53] are assigned to separate flows with different destination
addresses [54], [55]. However, per-destination VOQs are not
scalable since the number of VOQs required scales with the
number of hosts in networks. Floodgate [56] is a per-hop
flow control leveraging per-destination windows to identify
incast traffic in datacenter networks. Then, incast traffic can
be isolated from non-incast traffic. However, it should maintain
a per-destination state of the remaining sending window which
demands much memory resources on switches. In summary,
they only aim at eliminating HOL blocking caused by the last-
hop incast and cannot handle other types of congestion such
as load imbalance. In addition, they require per-destination
resources which build barriers to deployment at scale.

Queue-based flow control. A second line of work targets
assigning flows into a limited number of queues to alleviate
HOL blocking. Since it cannot isolate congested flows from
uncongested flows entirely, HOL blocking cannot be avoided.
In BFC [24], flows are assigned to a number of queues (i.e.c,
32-128 queues per port) according to their flow-ids and hash
functions. A flow is assigned to an empty queue if possible and
could share it with other flows when all queues are occupied.
As shown in Figure 2(c), with relatively large incast flows,
both vulnerable and background flows maintain a very low
throughput from 2ms to 12ms. The tail latency of flows is
prolonged by 6× compared with the per-flow queue scheme.
This is because incast flows can occupy queues for a long
time. Vulnerable and background flows sharing the same queue
with incast flows are severely hurt, and their transmission rate
is mistakenly controlled by the network bottleneck (i.e.c, the
destination ToR of incast).

To sum up, existing solutions cannot totally avoid HOL-
blocking, and some of them are impractical.
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Fig. 2. Performance when incast flows are mixed with non-incast flows.

Fig. 3. Performance comparison under MoE workloads (collided phase).

III. PYRRHA OVERVIEW

Our target is to eliminate HOL blocking caused by flow
control in the most cost-effective way. In this section, we first
illustrate why congestion root is the appropriate granularity of
flow control along with the basic idea of Pyrrha, followed by
a list of challenges.

A. Basic Idea
Before illustrating our basic idea, we introduce several

concepts in flow control when congestion occurs. Figure 4
shows a typical congestion tree rooted at P5.
• Congestion Hotspot. When the congestion occurs, a flow

control scheme starts to pause upstream, inducing several
hotspots along its back-pressuring path. A congestion
hotspot is an output port whose input rate exceeds its
output rate and its queue accumulates.

• Congestion Root. As its name implies, a congestion root
is the root cause of the congestion, where congested
flows finally aggregate. Meanwhile, it is the root of the
corresponding congestion tree.

• Congestion Tree. A congestion tree can be made up of
a root (e.g., P5), non-root hotspots (e.g., P1-P3) and leaf
ports (already controlled by the root but have not paused
its upstream yet). In our paper, a congestion tree is named
after its root (e.g., T5 denotes the tree whose root is P5).

Why congestion-root-based FC? A non-differentiating
treatment of flows passing through congestion roots and
hotspots could result in HOL-blocking since flows passing
through hotspots might not contribute to the congestion. To
avoid involving innocent flows, flow control should decide
the right scope of flows to control. Intuitions are that if a
flow control only applies pause to flows contributing to the
congestion root, HOL-blocking can be eliminated. Meanwhile,
flows passing through different congestion roots should be
handled separately to avoid interfering with others.

Quick reaction to congestion: identify congested flows
upon arrival. Once a congestion root is detected, the conges-
tion root information is propagated to its upstream switches
when it is detected. Then each switch maintains a congestion
status snapshot of its downstream networks. A congested flow
can be detected upon its arrival in networks by checking

whether its path matches existing congestion roots. Hence, its
transmission can be controlled several hops earlier before it
arrives at congestion roots. It reduces the occurrence of severe
congestion and relieves the buffer pressure on following hops,
especially on congestion roots.

Fine-grained isolation: manage traffic according to its
contributed congestion roots. By default, flows are pushed
into a physical output queue (OQ). For separate control, con-
gested flows passing through the same congestion root should
be pushed into a dedicated isolation queue (IQ) assigned to the
corresponding congestion root. Different categories of flows,
e.g., congested flows contributing to different congestion roots,
and uncongested flows are isolated respectively. Then, the
transmission of congested flows can be controlled precisely
by pausing the exact queue assigned to the congestion root,
which avoids congestion spreading.

Based on the above ideas, we propose Pyrrha, a practical
fine-grained flow control scheme based on congestion roots.
Pyrrha achieves good properties with the formal proof is
placed in § VI and § VII:
• HOL-blocking-free. Pyrrha has no HOL blocking in any

scenario (Theorem 1).
• Minimal queue usage. Pyrrha is a HOL-blocking-free

flow control protocol requiring the minimal number of
queues (Theorem 2).

• Deadlock-robust. Pyrrha is deadlock-free in some
deadlock-prone scenarios where other per-hop flow con-
trol protocols fail (§ VII).

B. Design Challenges

Identify congestion roots. Correctly identifying the con-
gestion root is the prerequisite of proper flow control. In tree
T5 of Figure 4, P1-P3, and P5 should agree that P5 is the root
of incast. Otherwise, if P1 incorrectly identifies itself as an
independent root, vulnerable flow VS→VR becomes a victim.

Identify congested flows. To control the transmission of
flows separately, congested flows should be identified pre-
cisely. When an uncongested flow is mistakenly identified
(e.g., VS→VR) as a congested flow, it can be paused incor-
rectly. To recognize a congested flow quickly, a switch should
obtain the flow’s path to be traversed in its downstream
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Fig. 4. Congestion tree illustration.

network so that it can check the path against its downstream
network snapshot.

Handle tree-tangling scenarios. Several concurrent con-
gestion trees can be intertwined among themselves. If non-root
ports of trees are overlapped, these ports can play different
roles in different congestion trees. These ports should not
entangle transmission control received from different trees.
When a tree is covered by another one, it results in a flow con-
tributing to several congestion roots, which appear frequently
in real systems. One may wonder why congestion still occurs
at a port after part of its passing flows is controlled by its
downstream congestion roots. This is because the congestion
at the port is caused by itself other than its downstream ports.
Figure 5(b) depicts an example that the path of a flow can
first match a congestion root (P6) and then match another
congestion root (P5). The transmission of the congested flow
should be controlled by both congestion roots, i.e.c, only
when both congestion roots send a RESUME frame can the
flow be transmitted. Besides, the transmission control of the
flow should not interfere with other flows sharing one of the
congestion roots.

In addition, when the competing traffic changes, the con-
gestion tree can shrink or expand, leading to congestion roots
varying over time. For P3 in Figure 4, initially, packets of
flows {S4-S5} →R1 are controlled in the IQP5. If flows {S1-
S3} →R1 finish, P3 is likely to become the new congestion
root later. Flows {S4-S5} →R1 are no longer the congested
flows of P5. Instead, they are congested flows of P3. Later-
arrived packets of these flows should be carefully scheduled
in case they are transmitted before packets previously queued
into the IQP5, which results in out-of-order delivery.

IV. PYRRHA DESIGN

Figure 5 demonstrates the architecture of Pyrrha. The bot-
tom part of the figure denotes the packet propagation among
Pyrrha switches. And the upper part depicts the three major
components of a Pyrrha switch. Congestion Root Identification
(§ IV-A) responds to downstream switches to detect con-
gestion and identify the corresponding root. The congestion
information is carried in flow control frames (e.g., PAUSE)
and propagated to upstream switches in a hop-by-hop manner.
Congested Flow Identification (§ IV-B) maintains the snapshot
of downstream network congestion states to help quickly
recognize congested flows through path matching. Isolation
queues (IQs) are structured in a hierarchy corresponding to the
topology by Congested Flow Management (§ IV-C). Details
and discussions are put in § IV-D and § IV-E.

A. Congestion Root Identification

Initial detection. Inspired by the root-election process of
spanning tree protocols, a congested port can claim itself
a self-nominated congestion root candidate independently.
Initially, each port is attached with a OQ and flows are pushed
into the OQ by default. Hence the queue length increase
on the OQ can be regarded as an indication of congestion.
When a data packet arrives at the OQ, a switch checks
whether the queue length exceeds a given threshold Kpause
(e.g., several per-hop BDPs). If so, a hotspot is detected and
the hotspot regards itself as a congestion root. Subsequent
packets that arrive at the hotspot trigger a PAUSE frame to the
corresponding upstream port from which the packet arrived.

Congestion root identification. According to behavior of
flow control, a root is always the most downstream hotspot in a
tree. Hence, we can identify the real congestion roots by merg-
ing upstream congestion tree into a more downstream one.
As shown in Figure 5(a), when a congestion-root-candidate
hotspot (P1) receives a PAUSE frame from a downstream
root (P5), it indicates that part of its passing-through flows
also traverses this downstream hotspot. Hence it recognizes
itself as a false-positive congestion root. A new IQ for this
new congestion root (P5) is assigned. All following packets
matching the new root will enter the corresponding IQ. Then,
the old congestion tree is canceled and merged into the new
congestion tree. Note that this process can be iterative when
there exist multiple layers of hotspots in a congestion tree.
The false-positive congestion roots are eventually merged and
the root of the new congestion tree is the real congestion root.

Merging process. To start merging, the false-positive con-
gestion root notifies all its child nodes by sending a control
message MERGE. MERGE is sent to all its upstream entities
belonging to the (old) false-positive congestion root, carrying
the ID of both old and new congestion roots. As shown in
Figure 6, switches receiving the MERGE frame change the
state of the corresponding IQ to soft-merging and propagate
the notification to its upstream further. Soft-merging means
that the old IQ now belongs to no congestion tree and can
be unassigned once empty. The packets queuing in the old
IQ are not controlled by the false-positive congestion root.
Instead, only packets passing through the real congestion root
are controlled (§ IV-C). The merging process finishes within
a one-way delay, hence false-positive congestion roots have a
negligible impact on performance.

B. Congested Flow Identification

Intuitions are that a congested flow passes through at least
one congestion root.

Determining a flow’s exact path. To determine whether a
data packet belongs to a congested flow, the entire onward-path
of each arriving packet at a switch should be deterministic.
Pyrrha is compatible with traffic load balancing protocols that
can locally get deterministic onward paths for flows [38],
[57], [58], [59], [60]. Among those load balancing protocols,
hash-based protocols (e.g., per-flow ECMP and PLB [37])
are most widely deployed given its no-reordering properties
[61]. Pyrrha proposes a hash-function-aware design. Pyrrha’s
switch calculates a packet’s onward-path by using its IP tuples,
routing hash functions, and seeds of its downstream switches,
together with flow labels carried in its header if necessary
as input. Besides, source routing is compatible with Pyrrha
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Fig. 5. Pyrrha architecture.

Fig. 6. IQ state transitions.

naturally since Pyrrha’s switch can derive the onward-path of
a packet by parsing its header.

The memory and computation resource to get a flow’s path
is moderate, and following optimizations are facilitated by
leveraging the industry-standard practices in datacenters. (i)
Given that switches in datacenter only support limited types
of hash functions (e.g., CRC or XOR) to conduct efficient
calculation [61], [62], [63], Pyrrha switch only needs to store
the type of the hash function of other switches along with
their hash seeds. (ii) In many widely Fdeployed topologies
[32], [64], [65], [66], the multiple equal path property and
the up-down routing strategy can be leveraged to optimize
the overhead. In those topologies, the forwarding tables of
all core switches are identical. Hence, Pyrrha switch only
needs to store one replica for core switches’ forwarding tables.
Furthermore, for fat-tree, the path from a core switch to a given
destination is unique, hence Pyrrha switch only conducts hash
function calculation for the first two hops.

For other adaptive load balancing approaches, e.g., per-
packet spraying and DRILL [42], [67], which determine the
path of flows through dynamic states, Pyrrha is a comple-
mentary solution to handle the hotspots caused by destination
collision (i.e.c, incast), where load balancing falls short. Exper-
iments in our conference paper [49] show that Pyrrha is
compatible with DRILL and further improves the tail latency
by 18.3% compared to pure Pyrrha. Pyrrha also handles corner
cases where flows are re-routed to different paths due to link
failures (for further details on the evaluation of this feature,
see our conference paper [49]).

Matching and maintaining snapshot. Pyrrha’s switch
maintains the congestion-root table of the downstream net-
works. As shown in Figure 5(b), the table maintains a snapshot
of the congestion states of its downstream networks. When a
PAUSE frame indicating a new congestion root is received, the

congestion root is recorded in the table. When a packet arrives
at the switch, its path can be obtained via above mentioned
methods. The switch checks whether its path matches any
entry in the congestion-root table. For port P1 in Figure 5(b),
packets that will traverse P5 in its downstream path are iden-
tified as belonging to a congested flow. Hence, it’s enqueued
to a separate IQ, which is paused/resumed based on the state
of the corresponding root. Otherwise, the packet belongs to an
uncongested flow and is put in the OQ.

C. Congested Flow Management
To handle tangled scenarios where congestion trees are

intertwined among each other or congestion roots vary over
time, Pyrrha leverages a hierarchical methodology to manage
congested flows corresponding to that of the topology. It can
be supported by a Hierarchical Isolation Queue (HIQ) archi-
tecture, which manages congested flows in a hierarchy. Pyrrha
installs HIQ during compilation according to its location in
networks and manages the usage of queues dynamically during
runtime through a mapping table. We also provide single-tier
IQs prototype to fully support the function of HIQ.

Handling congested flow in hierarchy. Congestion trees
are intertwined when non-root ports of trees are overlapped or
a tree is covered by another one. For the first scenario, IQs on
ports can naturally isolate control from different congestion
roots on non-root ports. For the latter one, a congested
flow could pass through multiple congestion roots. To ensure
precise control isolation, a congested flow should match all
corresponding IQs before it is forwarded. A hierarchical orga-
nization of IQs based on the location of their corresponding
congestion roots in the topology enables a congested flow
to match appropriate IQs sequentially. Especially, when per-
flow load balancing is used, a flow at most encounters one
congestion root among switches at the same level. It ensures
in-order delivery when a congested flow alters its matched IQs.

Hierarchical Isolation Queue (HIQ) architecture. HIQ
consists of several levels of IQs. Each IQ is positioned in
a hierarchy according to its distance to the corresponding
congestion root in the physical topology. Hence, the number
of layers of the HIQ is determined by its location in the
network. As shown in Figure 5(c), in a two-tier network,
an uplink port of a ToR switch maintains two levels of IQs,
since the farthest potential congestion root is two hops from it.
Figure 5(c) depicts the HIQ architecture on P7, i.e.c, the leaf
port in Figure 5(b). P7 fully utilizes the two-level architecture
of the HIQ, since the farthest congestion root P5 is two hops
from it. Especially, the OQ is connected to the last level of
the HIQ architecture. A dedicated scheduler is equipped for
each level of queues to schedule the traffic transmission. Only
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when an IQ is in a resumed or soft-merging state can its
packet be dequeued and pushed into the next-level IQs/OQ.
From the perspective of a packet, this process is performed
iteratively until it reaches the OQ. In the scenario depicted in
Figure 5, when a flow that will traverse congestion root P6 and
P5 arrives at the upstream switch of port P6, it matches the
HIQ from-near-to-far. After a packet is dequeued from IQP6,
it is pushed into a next-level IQP5. When there is no more
matched IQ, it is pushed into the OQ. Hence, the packet can
be forwarded to the next hop only after all matched congested
roots are resumed. In this way, congested flows are controlled
locally precisely.

IQs in HIQ are arranged by levels, supporting in-order
delivery naturally. Considering the merging procedure in Fig-
ure 5(a), the congestion root is changed from P1 to P5. IQP1 is
in the soft-merging state and packets in it can be mixed with
congested and uncongested traffic. Pyrrha should handle them
separately to avoid HOL blocking. Congested flows of root P5
are dequeued from IQP1 and then pushed into the next level
IQP5. Uncongested flows are forwarded to OQ. In this way,
precise isolation is achieved without inducing re-ordering.

Handling secession of the congestion root. Once the OQ
length of the congestion root decreases below the resume
threshold, it sends back RESUME to its upstream. Likewise,
upstream switches could resume their upstream when their
own IQ decreases below the resume threshold. It is an iterative
process that the congestion tree eliminates starting from the
leaf switches to the root. A congestion port becomes a leaf
when it has not sent PAUSE yet, or when the status of all
its upstream entities is set to unassigned. The IQ of the leaf
switch is unassigned when it becomes empty. When all the
upstream IQs of a congestion root are marked unassigned
and the queue length of OQ of the congestion root is below
the resume threshold, the congestion root disappears naturally.
Figure 6 depicts the state transition of the IQ usage. Only when
an empty IQ is in a resumed or soft-merging state can it be
marked as unassigned.

D. Miscellaneous Detailed Design

Congestion information propagation. There are three
types of flow control frames in Pyrrha, e.g., PAUSE,
RESUME, and MERGE. These control frames carry the con-
gestion information and control the transmission of congested
flows accurately in a hop-by-hop manner. Correspondingly,
there are three states for an IQ, i.e.c, paused, resumed, or soft-
merging. The state transitions of an IQ are shown in Figure 6.

When a congestion root is detected, a PAUSE frame is sent
back to the upstream port through the ingress port of which the
data packet is just received. Once a data packet is pushed into
the OQ which is attached to the congestion root, Pyrrha switch
checks the packet’s ingress port and sends back the PAUSE
frame. A PAUSE frame carries the ID of the congestion
root (i.e.c, identified as switch-id:port-id). Likewise, when the
queue length of IQ exceeds the threshold Kpause, a PAUSE
frame carrying the root ID is sent back to its upstream switch.

Cooperation on end-hosts. To handle persistent congestion,
end-hosts should control the upcoming traffic into networks.
Pyrrha can cooperate with congestion control protocols. And
Pyrrha can perform better if end-hosts can respond to PAUSE
(or RESUME and MERGE) frames. To pause and resume
at a per-flow granularity, end-hosts could leverage a pull-
based transmission model, which can be implemented by

Fig. 7. Queue usage analysis.

programmable smart NICs in RDMA networks. Especially,
Pyrrha can also handle end-host congestion (e.g., PCIe con-
gestion) by backpressuring the traffic it receives.

Handling rare packet loss. Pyrrha reduces queue lengths
significantly. Hence, buffer overflow rarely occurs. However,
Pyrrha cannot guarantee lossless in all scenarios. In an m : 1
incast, the victim egress port will accumulate Kpause+m×per-
hop BDPs of data. In extreme cases, such as when each egress
port of the switch alternately becomes the victim of a k −
1 : 1 incast (k denotes the number of ports on switches),
total buffer accumulation may exceed switch capacity, causing
packet loss. In this case, Pyrrha can leverage IRN [68] for fast
retransmission.

E. Design Discussions
Queue consumption. In the most extreme scenario, the

number of congestion roots can be the number of ToRs in
the network. However, the concurrent amount of congestion
in networks is usually moderate. It is reported that only 3%
of the links in edge and aggregation layers appear as a hotspot
for more than 0.1% of time intervals [34], [69]. Moreover, the
concurrent roots can be much less than that of hotspots.

To investigate the IQ usage, evaluations under stressful
workloads where (m − 1) out of m ToRs send traffic simul-
taneously to the left 1/m of the ToRs are conducted. A
k = 12 fat-tree topology is employed and each host sends 40
one-BDP flows continuously to create a substantial network
burst. Figure 7 illustrates the IQ usage of Pyrrha as the
fraction of senders varies. The IQ utilization ranges from
6-20, approximately proportional to the number of switch
ports k, which is considered to be relatively moderate. Since
commodity switches can support thousands of VOQs [51],
[52], [53], assigning a dedicated queue to each downstream
root is feasible. To handle corner cases where IQs are not
enough, similar to BFC, Pyrrha leverages hash functions [70],
[71] to choose an IQ according to the congestion root ID, at
a cost of sacrificing precise isolation.

Deadlock prevention. Pyrrha is deadlock robust since OQs
never get paused. To prevent cyclic buffer dependencies (CBD)
caused by routing loops, Pyrrha switch checks whether the
congestion root carried in the PAUSE frame is identical to its
own identifier. If so, it ignores the PAUSE frame directly (§
VII).

Incremental Deployment. To support incremental deploy-
ment, Pyrrha-enabled switches can operate in a hybrid
environment with legacy PFC switches by enabling PFC
for interoperability with legacy switches. In this mode, PFC
provides a lossless fabric between Pyrrha and PFC switches.
Meanwhile, traffic traversing multiple Pyrrha-enabled switches
benefits from its head-of-line blocking-free flow control, sub-
stantially improving performance.
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V. IMPLEMENTATION AND TESTBED EXPERIMENTS

We implement a Pyrrha prototype on Tofino2, a state-of-
the-art programmable switch ASIC [39] with Reconfigurable
Match Table (RMT) architecture. In this section, we briefly
describe the key modules of the prototype, followed by the
overhead analysis. Testbed evaluations show that Pyrrha can
achieve good performance (§ V-B). More implementation
details are placed in our conference paper [49].

A. Prototype of Pyrrha
We implement a Pyrrha prototype on Tofino2 with 2.5k lines

of P4 code and 2k lines of Python code. The operations of
Pyrrha is implemented entirely in the data plane at line rate.

Key modules and the pipeline. The Pyrrha prototype is
mainly composed of several modules, i.e.c, (i) congestion root
matcher, (ii) queue manager, (iii) queue state detector, and (iv)
signal packet module.

(i) Upon arrival, the data packet first undergoes a standard
processing procedure, including forwarding and admission
control. Subsequently, the data packet is forwarded to the
congestion root matcher, an integral component of the path
calculation unit and a congestion root table, facilitating the
congested flow identification. Specifically, the path calculation
unit calculates the packet’s egress ports of its onward path. The
congestion root table records the status of ports, indicating
whether the port is congested or not. (ii) Then packets enter
the queue manager for queue assignment. The queue manager
assigns queues to traffic based on the congestion roots it would
pass through. Central to its design is a multi-segment stack,
wherein each segment manages the available queues for a
specific egress port.

(iii) The queue state detector checks whether the length of
the assigned queue exceeds the pause threshold or decreases
below the resume threshold, and then triggers appropriate
signal packets. The queue length is retrieved by utilizing ghost
threads in Tofino2.

(iv) When it is necessary to send a signal packet, the
signal packet module leverages the packet trigger functionality
to construct signal packets, such as PAUSE and RESUME.
Upon receiving a PAUSE or RESUME, the module engages
Tofino2’s AFC (Advanced Flow Control) mechanism to pause
(or resume) the queue.

Feasibility of HIQ The architecture of HIQ is supported
in current Metro Ethernet (MetroE) service routers [72], [73].
And a recent work of implementing multi-level scheduler on
ASIC [74] also verifies its feasibility. According to private
talks with chip vendors, they consider it possible to implement
HIQ in their next-generation switching chips. For instance,
the two-layer HIQ can be obtained by connecting two traffic
manager models in series and specifying the next-level IQ to
be pushed in when a packet is dequeued. Although HIQ is not
supported by the architecture of Tofino2 currently, the features
of HIQ can be fully supported via single-tier queues (see our
conference paper [49] for details).

Complexity and overhead. Tofino2 adopts pipeline archi-
tecture, wherein the resource allocation is determined at
compile time. It enables us to ascertain Pyrrha’s resource
requirements without running it in a large-scale cluster.
According to the statistics reported in megascale [75], the
scale of current data centers can reach up to 10,000 hosts.
Therefore, we use a k=36 fat-tree topology with 11,664
hosts as a representative case. Pyrrha prototype can easily

Fig. 8. Testbed topology.

Fig. 9. FCT of testbed experiments.

scale to it, with around 11 MB (i.e.c, 44.5% of Tofino2) of
the memory resource consumption. Specifically, the memory
usage of Pyrrha prototype is mainly composed of three units,
i.e.c, path calculation unit, congestion root table, and queue
manager, overall consuming 9.25 MB. And the processing
logic consumes around 1.88 MB. (i) As analyzed in § IV-B,
the memory consumption of the path calculation can be
optimized by leveraging the industry standard, occupying
0.44MB SRAM. (ii) The congestion root table is organized
hierarchically, where the nth table records ports that are n hops
away from the switch, and the port is identified as <switch-
id, port-id>. Hence, the storage usage of the congestion root
table is proportional to the number of ports in networks,
occupying 176 KB SRAM. (iii) The queue manager firstly
checks whether the congested flow is assigned a queue through
a IsAssigned Table and assigns a queue if necessary by looking
up a multi-segment QueueId stack which records the available
queue. Then it updates the QueueId record table to record
the queue assignment status. This module overall consumes
8.64MB SRAM. Furthermore, anticipating the rapid matura-
tion of HIQ technology [74], we pre-design a HIQ-compatible
pipeline. Our analysis shows that the reduced queue require-
ments in HIQ significantly lower system overhead, enabling
Pyrrha to scale to topologies an order of magnitude larger
when HIQ becomes available (detailed analysis is placed in
our conference paper [49]).

B. Testbed Evaluation
Topology. We use a 2-level leaf-spine topology as shown

in Figure 8, consisting of three ToR, two core switches, and
two hosts per rack, all connected via 100 Gbps links.

Workloads. We evaluate Pyrrha under incast-mix scenar-
ios. Incast flows are generated by letting hosts S1 and S2
transmit flows to host R1 simultaneously. Vulnerable flows
are generated by letting host VS send flows to host VR. Flows
S2→R1 and VS→VR share the same port on the core switch.
Web Server and Web Search flows are generated following a
Poisson arrival process (§ VIII).

Pyrrha reduces the FCT of vulnerable flows. Figure 9
demonstrates the FCT performance of vulnerable flows. For
PFC, vulnerable flows are HOL blocked by incast flows,
suffering a large queuing delay. Pyrrha quickly detects the
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Fig. 10. Throughput of testbed experiments.

Fig. 11. The pattern of flow control and HOL blocking in the framework.

congestion on the destination ToR switch and isolates incast
flows into a dedicated queue. Thus, the FCT of vulnerable
flows is greatly reduced.

Pyrrha improves the throughput. Figure 10(a) shows the
throughput when flows on three hosts S1, S2, and VS start
to arrive at 1s, 4s, and 7s, respectively. Pyrrha improves the
throughput of vulnerable flows to 66.7 Gbps without compro-
mising the overall throughput of incast flows (100 Gbps). The
network throughput is improved by 26.7 Gbps.

VI. HEAD-OF-LINE BLOCKING ANALYSIS

Overview. In this section, we propose a framework for
analyzing the existence of HOL blocking and the queue usage
of flow control protocols. We first construct a formal model
based on a bipartite graph of flows and queues and provide
the necessary definitions for the analysis (§ VI-A). Then, we
establish a formal criterion to determine whether a flow control
protocol is HOL-blocking-free (§ VI-B). Finally, we apply this
framework to formally prove that Pyrrha is not only HOL-
blocking-free but also achieves this with the minimum usage
of queues (§ VI-C).

Insight. Inspired by the gradient graph [76], [77], we
represent flows and queues as vertices, and their traversing
relationship as edges. Figure 11 visually summarizes the
core concept and the logic of our proof, where rectangles
represent queues and circles represent flows. Congestion at
the congested queue (qc) is caused by a set of congested
flows (fc) passing through it, which are presented as neighbors
in the graph (relationship i). A flow control protocol pauses
these congested flows by pausing the upstream queues they
traversed, which are referred to as potentially paused queues
qp.p. (relationship ii). However, this action risks HOL blocking
if qp.p. is also shared by other innocent flows, which are
referred as potentially paused flows fp.p. (relationship iii). In
order to prove that Pyrrha is HOL-blocking-free, the core of
our proof is to formally demonstrate that for any congested
queue in Pyrrha, the set of potentially paused flows (Fp.p.) is
identical to the set of congested flows (Fc). Furthermore, we
prove that any flow control protocol using fewer queues than
Pyrrha cannot avoid HOL blocking through Dirichlet’s box
principle and proof by contradiction.

TABLE I
NOTATIONS USED IN PYRRHA ANALYSIS

A. Model and Definitions

We first present the notations used in the analysis and then
formally define the analysis framework. For clarity, notations
are gathered into Table I.

We denote by S, a scenario representing the state of the
datacenter network at a specific time instance. The scenario
S captures the topology, traffic matrix, congested ports, and
congested flows in the datacenter network. We define an
undirected graph G to describe each congestion scenario S.
Definition 1 gives the formal definition. Specifically, the graph
consists of a vertex set V divided into two sets: the set of flows
F and the set of all queues Q in the network, similar to the
gradient graph in [76] and [77]. Each flow and each queue is
then a vertex in our graph G. The edge set consists of edges
denoted by e = (f, q), if and only if a flow f traverses queue
q. There is only one edge between f and q.

Definition 1: (Graph:) A scenario S is described by an
undirected graph G = (V,E), where V = F ∪ Q is
the set of vertices consisting of two disjoint subsets: flows
F and queues Q. The edges E represent the pass-through
relationship between flows and queues, i.e.c, E = {(f, q) |
fpasses through q}. G is a bipartite graph.
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In our analysis, we are interested in the interactions between
queues and flows traversing them under a specific flow control
protocol. To this end, we define the neighborhood set N(v) as
the set of neighborhoods of vertex v. Definition 2 gives our
formal definition.

Definition 2: (Neighborhood set:) The neighborhood set of
a vertex v, denoted by N(v), is the set including all vertices
adjacent to v. For a vertex set U ⊆ V , we denote by N(U)
the union of neighborhood sets of all vertices v ∈ U .

N(v) = {v′ | (v, v′) ∈ E} (1)

N(U) =
⋃
v∈U

N(v) (2)

Flow control protocol. It is difficult to model all the
protocols within one framework. Among all flow control
protocols, the most prevalent type is the per-hop flow control
protocol. To the best of our knowledge, all lossless flow
control protocols operate in a per-hop manner [24], [29], [40].
In contrast, non-per-hop flow control protocols need a large
headroom to be lossless, which is unaffordable on commodity
switches. Therefore, we only analyze per-hop flow control
protocols in our analysis.

Further, we only analyze egress-based flow control pro-
tocols. There are many works based on the ingress queue.
However, most of the commodity datacenter switches have
only egress queues, and the ingress queues are only counters
rather than buffers. This leads to the fact that ingress-based
works can be analyzed using the egress-based framework.
Consider a congestion scenario where two flows from different
ingress queues converge at an egress queue. Under PFC, an
ingress-based protocol, each congested ingress queue pauses
its corresponding upstream egress queue. In our analysis
framework, this is equivalent to the egress queue being con-
gested and then pausing the two upstream egress queues
according to the flows’ ingress direction.

The fundamental control entity of the flow control protocol
is a queue. Thus, we use a queue as the basic unit to define
the flow control protocol. In our framework, we consider
congested ports and congested flows to be pre-determined and
flow control protocols only decide the queue assignment and
queue behaviors.

Definition 3: (Congested flows:) Given a congested queue
qc, the set of congested flows Fc(qc) is defined as the set of
all flows passing through the congested queue qc i.e.cFc(qc)
is the neighborhood set of qc in the graph G.

Fc(qc) = N(qc) (3)

In flow control protocols, the pause to a congested flow fc
is achieved by pausing queues that fc passed earlier than the
corresponding congested queue qc.

Definition 4: (Potentially paused ports:) The potentially
paused ports denoted by Pp.p.(qc, fc) are the ports that each fc
passed through earlier than qc. Let Ri(f, p) denote the order
of port p along the path of flow f , then Pp.p.(qc, fc) is given
by,

Pp.p.(qc, fc) = {p | Ri(fc, p) 6= ⊥∧
Ri(fc, p) < Ri(fc, P (qc))} (4)

Pp.p.(qc) =
⋃

fc∈Fc(qc)

Pp.p.(qc, fc) (5)

Based on our definition of potentially paused ports Pp.p.(qc)
(Definition 4), we can now define potentially paused queues

Qp.p.(qc) as the set of queues that a congested flow fc passes
through at each port in Pp.p.(qc). In addition, as indicated by
relationship II in Figure 11, all queues that each fc passes
through earlier than qc are potentially paused by per-hop flow
control protocols.

Definition 5: (Potentially paused queues:) Given a specific
congested queue qc, potentially paused queues Qp.p(qc) are
queues traversed by the congested flows passing through qc.
Specifically, let Q(p, f) denote the queue that a flow f passes
through at port p. Then, the set of potentially paused queues
Qp.p(qc) is the union of queues traversed by every congested
flow fc ∈ Fc(qc) (Definition 3), before reaching qc:

Qp.p.(qc) =
⋃

fc∈Fc(qc)

{Q(p, fc) | p ∈ Pp.p.(qc, fc)} (6)

Alternatively, we can write Qp.p(qc) as,

Qp.p.(qc) = {qp.p. | ∃fc ∈ Fc, s.t., qp.p. ∈ N(fc)∧
Ri(fc, P (qp.p.)) < Ri(fc, P (qc))} (7)

where Pp.p(qc, fc) is the set of potentially paused ports (Defi-
nition 4), Ri(f, p) is the order of port p along the path of flow
f . The set of potentially paused queues w.r.t. a congested port
p is the union of the potentially paused queues w.r.t each queue
belonging to the port p i.e.c

Qp.p.(p) =
⋃

qc∈Qc(p)

Qp.p.(qc) (8)

Similar to the Definition 4, 5, as indicated by rela-
tionship III in Figure 11, the potentially paused flows
are the flows that pass through potentially paused queues,
i.e.c, the neighborhood of potentially paused queues in graph
G. In the following, we formally define potentially paused
flows.

Definition 6: (Potentially paused flows:) Given a congested
queue qc, potentially paused flows Fp.p(qc) is the set of
flows traversing the potentially paused queues Qp.p(qc), i.e.c,
Fp.p(qc) is the neighborhood of Qp.p(qc):

Fp.p.(qc) = N(Qp.p.(qc)) (9)

Given a congested port p, potentially paused flows Fp.p(p)
is the set of flows traversing the potentially paused queues
Qp.p(p), i.e.c, Fp.p(p) is the neighborhood of Qp.p(p):

Fp.p.(p) = N(Qp.p.(p)) (10)

Based on the model and definitions introduced in this
section, we next study the Head-of-line blocking properties
of flow control protocols.

B. Head-of-Line Blocking
In this subsection, we introduce the pattern of HOL block-

ing. As mentioned in the background section of the paper,
HOL blocking caused by flow control is defined as a flow
being paused innocently by the congested port that it does not
pass through. According to the definition, we use a two-step
approach to detect HOL blocking. First, we identify all flows
potentially paused by flow control triggered by a congested
port. Then we check whether these flows are innocently paused
by a congested port that they do not traverse.

Recall that Section VI-A introduces the flow control pattern
and derives the set of potentially paused queues Qp.p.(qc).
We then determine whether potentially paused flows traverse
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the congested port. If a potentially paused flow traverses the
congested port, it is not subject to HOL blocking. If all
potentially paused flows for a congested port traverse that
port, we can conclude that no HOL blocking occurs for this
congested port.

Definition 7: (No HOL blocking:) There is no head-of-
line blocking due to a congested port p if and only if the
following conditions are satisfied: all the potentially paused
flows Fp.p(p) w.r.t port p traverse a queue at port p. This can
be formally defined as:

∀f ∈ Fp.p.(p), f ∈ N(Q(p)) (11)
⇐⇒ Fp.p.(p) ⊆ N(Q(p)) (12)

If there is no HOL blocking for all congested ports, then there
is no HOL blocking in the network.

Since the vertices in the graph G are mapped one-to-one
with the flows and queues in the network, the HOL blocking
criterion (Definition 7) based on the graph G is sufficient and
necessary. Specifically, if there is a potentially paused flow
fp.p. ∈ Fp.p.(p) not adjacent to any queue of the congested
port in the graph G, then the flow can be paused by congested
port p but not traverse the congested port p, i.e.c, the HOL
blocking occurs, and vice versa.

C. Analysis of Pyrrha
In this section, we first formally define Pyrrha’s mechanism

and then present a formal proof. We will prove two theorems
related to Pyrrha.
• Theorem 1: Pyrrha has no HOL blocking in any scenario.
• Theorem 2: Pyrrha is a HOL-blocking-free flow control

protocol requiring the minimal number of queues.
Discussion about Pyrrha with different queue organiza-

tions. We only analyze Pyrrha with single-tier IQs for now, and
leave the generalization for future work. The main challenge
for analyzing Pyrrha with HIQ is that it is hard to model all the
feasible behaviors of HIQ. However, we believe that theorems
of Pyrrha are not affected by the way it is implemented.

For Theorem 1, the property of no HOL blocking comes
from the isolation of different congested flows. Thus, the
property can be maintained as long as the flows can be isolated,
regardless of the queue organization.

For Theorem 2, the number of required queues equals the
number of congested flow groups that need to be isolated, as
each group needs a separate queue for isolation. In Pyrrha,
the number of congested flow groups relates to the number of
congestion roots, which is independent of queue organization.
In fact, Pyrrha with HIQ will use fewer queues than Pyrrha
with single-tire IQ.

Formal definition of Pyrrha. Recalling the design of
Pyrrha (§ IV), a congested port can claim itself as a self-
nominated congestion root and begin to send out PAUSE
frames. Once the congested port receives a PAUSE frame
from a downstream congested port, it abdicates its claim and
turns into a hotspot caused by downstream congested port. A
hotspot could still claim itself a congestion root if it becomes a
congested port again (i.e.c, congestion detected in OQ again).
Summarizing the above process, we find that when a port
becomes a congested port, it claims itself as a congestion
root; and when it abdicates its claim, it turns into a hotspot
simultaneously. Therefore, the two terms congested port and
congestion root are equated when describing the mechanism
of Pyrrha in the following analysis.

In a congested port of Pyrrha, there must be a congested OQ
and perhaps some congested or uncongested IQs. Recalling
that in the analysis framework, when we analyze a congested
queue, we consider all queues that would be paused by the
hop-by-hop pause of the congested queue as potentially paused
queues. Thus, the pause behavior of an IQ can be seen as
the hop-by-hop relay of the pause behavior of the OQ of the
congested port corresponding to this IQ, which is contained
by the analysis of the OQ of the congested port. Therefore,
we only need to analyze the OQ of each congested port to
cover flow control behaviors of Pyrrha.

For a congested queue qc, Pyrrha pauses the congested flows
passing through it by sending PAUSE frames to upstream
ports. Each port receiving a PAUSE frame attempts to place
congested flows into the corresponding IQ for the congested
queue they traverse, creating the IQ if it does not exist.
Therefore we use the set of OQs the IQ corresponding to
as the qid. As an example, we denote the IQ at the upstream
port p traversed by a flow that already passed through two
congested OQs q1 and q2 as qp-{q1,q2}. Especially, the qid of
an OQ is an empty set ∅ (or denoted as {}).

The formal definition of the mechanism of Pyrrha is:

Qp.p.(qc) = {qp-{··· ,qc,···} | p ∈ Pp.p.(qc)} (13)
f ∈ N(qp-{··· ,qc,···}) ⇐⇒ qc ∈ N(f) (14)

Equation 13 comes from the fact that the congestion signal
from congested queue qc only pauses the IQ corresponding
to itself. And Equation 14 comes from the fact that the flow
is pushed in IQ corresponding to qc if and only if the flow
passes through congested queue qc. The queue assignment of
Pyrrha is dynamic, and these two equations hold after every
assignment operation.

No HOL blocking analysis Then we prove that there is no
HOL blocking in Pyrrha.

Theorem 1: Pyrrha has no HOL blocking in any scenario.
Proof: From Equation 1, we can deduce that:

v1 ∈ N(v2) ⇐⇒ ∃e ∈ E, e = {v1, v2}
⇐⇒ v2 ∈ N(v1) (15)

Combining Equation 14 and Equation 15, we get:

f ∈ N(qp-{··· ,qc,···}) ⇐⇒ f ∈ N(qc) (16)

Then, we have:

∀f ∈ N(Qp.p.(qc)), f ∈ N(qc) (17)

Finally, we can deduce that:

Fp.p.(qc) = N(Qp.p.(qc)) ⊆ N(qc) (18)

For any port p, we have:

Fp.p.(p) =
⋃

qc∈Qc(p)

Fp.p.(qc)

⊆
⋃

qc∈Qc(p)

N(qc) ⊆ N(Q(p)) (19)

That is, the no HOL blocking criterion holds for any port in
Pyrrha. Thus Pyrrha has no HOL blocking in any scenario.�

Queue usage analysis. Then we prove that Pyrrha is a
HOL-blocking-free flow control protocol requiring the min-
imal number of queues. There are three kinds of queues in
the network when flow control protocol has been deployed:
congested queue, potentially paused queue, and normal queue

Authorized licensed use limited to: Nanjing University. Downloaded on January 12,2026 at 06:54:32 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: ANALYSIS OF PYRRHA: CONGESTION-ROOT-BASED FC IS MOST COST-EFFECTIVE 1969

that is neither congested nor potentially paused. The number of
normal queues is irrelevant to the behavior of the flow control
protocol. Therefore, we only consider the number of congested
queues and potentially paused queues.

To improve readability, we state in advance the insights and
notations used in the following proof. In the following proof,
we use the pigeonhole principle twice, once applied on the
queues (Lemma 1) and once on the ports (Theorem 2), and
we use * to denote the port containing more queues or the
queue containing more flows. To accomplish the proof, we
first prove the following helper lemmas.

Lemma 1: Assume there are two one-tier schemes to orga-
nize the queues and flows at port p, namely X and Y . If the
number of queues of X is less than that of Y , at least one
queue in X contains flows that belong to at least two queues
in Y .

Proof: Upon examining the queues for port p under Y , it
is clear that this port cannot have only one queue; otherwise,
this port would not contain any queue in scheme X . Therefore,
there must be n (n ≥ 2) queues in Y . In the single-tier queue
scheme, neighborhood sets of these n queues are pair-wise
disjoint, i.e.c, a flow will not pass through two queues on the
same port. Thus, we can use the pigeonhole principle on sets
of flows and queues in protocol X . Putting n pair-wise disjoint
sets of flows in less than n queues, there must be a queue q∗X
containing flows from two sets of flows. �

Denoting the set of queues as QX() and QY (), and the two
queues in Y as qY 1 and qY 2,the formal expression of Lemma 1
is:

|QX(p)| < |QY (p)| ⇒
∃q∗X ∈ QX(p),∃qY 1, qY 2 ∈ QY (p), s.t.

N(q∗X) ∩N(qY 1) 6= ∅, N(q∗X) ∩N(qY 2) 6= ∅ (20)

Lemma 2: If there exists a flow control protocol that uses
fewer queues than Pyrrha on a port, the flow control protocol
must incur HOL-blocking on that port.

Proof: Denote the flow control protocol as A and the port
is p∗. We use QA(p

∗) to denote the set of queues on port p∗
in protocol A, and QP (p

∗) for that in Pyrrha. It is clear that
the number of queues for Pyrrha on port p∗ must be larger
than 1. Otherwise, A can not use any queue on port p∗. Then,
we can apply Lemma 1 on port p∗. After substitute A to X
and P for Pyrrha to Y ,we obtain that:

∃q∗A ∈ QA(p
∗),∃qp∗-Qc1

, qp∗-Qc2
∈ QP (p

∗), s.t.

N(q∗A) ∩N(qp∗-Qc1) 6= ∅, N(q∗A) ∩N(qp∗-Qc2) 6= ∅ (21)

In the equation, q∗A stands for the queue at port p∗ in A that
contains flows that belong to at least two queues in Pyrrha.
qp∗-Qc1 and qp∗-Qc2 stand for two queues at port p∗ in Pyrrha
that some of the flows belong to them are contained by q∗A,
where Qc1 and Qc2 denote the sets of congested OQ the
queues corresponding to.

Without loss of generality, we assume that the difference
Qc1/Qc2 6= ∅ (if not, just swap the notation of the two sets).
For a congested OQ qp′-{} ∈ Qc1/Qc2 which is at p′, there
must be a flow f ′c passing through q∗A and congested port p′
in protocol A:

∃qp′-{} ∈ Qc1/Qc2, s.t.,∃f ′c ∈ N(q∗A) ∩N(Q(p′)) (22)

Thus, q∗A is a potentially paused queue with respect to p′ in
protocol A.

q∗A ∈ Qp.p.A(p
′) (23)

However, because q∗A contains flows which belong to qp∗-Qc2

and qp′-{}�∈Qc2, there must exist a flow passing through q∗A
but not passing through p′.

∃f ′ ∈ N(q∗A) ∩N(qp∗-Qc2
), s.t.

f ′ ∈ N(Qp.p.A(p
′)), f ′ /∈ N(Q(p′)) (24)

It can be further deduced that.

N(Qp.p.A(q
′
c))�⊆N(Q(p′))

⇒ Fp.p.A(q
′
c)�⊆N(Q(p′)) (25)

That is, the no HOL blocking criterion does not hold for
congested port p′. And the HOL blocking occurs at port p∗ in
flow control protocol A. �

Note that the above proof does not restrict q∗A to be a
potentially paused queue or a congested queue, nor does it
require both qp∗-Qc1

and qp∗-Qc2
to be IQs (potentially paused

queues). Therefore, Lemma 2 holds for both congested queues
and potentially paused queues.

Theorem 2: Pyrrha is a HOL-blocking-free flow control
protocol requiring the minimal number of queues.

Proof: We prove this by contradiction. We first assume
the existence of a lossless flow control protocol A that can
use fewer queues than Pyrrha to achieve HOL-blocking-free.
According to the pigeonhole principle, protocol A must use
fewer queues at a port p∗ than Pyrrha. According to Lemma 2,
protocol A must incur HOL-blocking on port p∗. This implies
that our hypothesis does not hold. Therefore, Pyrrha is a HOL-
blocking-free flow control protocol requiring the minimal
number of queues. �

VII. DEADLOCK ANALYSIS

In this section, we analyze the ability of Pyrrha to prevent
deadlocks. We use two deadlock-prone scenarios to show the
deadlock-robustness of Pyrrha. In each scenario, we first show
how deadlocks occur in PFC and the state-of-art flow control
algorithm (e.g., BFC). Then we illustrate why Pyrrha prevents
deadlock in these scenarios. Finally, we discuss the intuition
why Pyrrha provides deadlock-robustness on other scenarios.

Scenarios where a flow’s routing forms a loop. In this
scenario, a flow first passes through an egress port and then is
forwarded back to this port again, which could be attributed
to incorrect routing table entries.

An example of this scenario is shown in Figure 12. There
are three switches in the figure, where boxes on the top side
represent ingress ports and boxes on the bottom side represent
egress ports in each switch. In each egress port, there are one
or more egress queues, depending on the flow control protocol.
We use vertical shading to denote queues that are congested
(i.e.c, the queues that pause other queues), and horizontal
shading to denote queues that are paused. If a queue is both
paused and congested, it is marked by grid shading. The flow
stuck in the routing loop is drawn in a green line. We use a
hollow circle to represent the starting position of the flow, and
an arrow to represent the direction of the flow.

The flow first enters the upper switch from A2, exits from
A1, and is then successively forwarded to port B1 at the left
switch, to port C1 at the right switch, and finally to port A1
again at the upper switch. We assume that port C1 becomes
congested first in our following analysis.

In PFC (Figure 12(a)), the ingress buffer counter of port C3
rises and eventually triggers a PAUSE frame to port B1. Then
the same process is repeated between B1 and B3, and then
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Fig. 12. The scenario where a single flow forms a loop.

Fig. 13. The scenario where multiple flows sequentially form a loop.

between A1 and A3. Finally, port C1, the initially congested
port, is paused by port A3, which represents the formation of a
deadlock. The buffer dependencies of PFC in this scenario are
marked with thick gray arrows in the figure. We can clearly
see the Cyclic Buffer Dependency (CBD) among ports C1,
C3, B1, B3, A1, and A3.

As shown in Figure 12(b), a similar situation occurs in BFC.
BFC assigns a dedicated queue to the flow F1 at each egress
port. The queue of port C1 pauses the queue of port B1 once
the queue length reaches Kpause. Cascadingly, the queue of
port B1 pauses the queue of A1, and the queue of A1 pauses
the queue of C1. As a result, there is a CBD between the
queue for F1 at ports A1, B1, and C1.

As shown in Figure 12(c), CBD does not exist in Pyrrha. In
the figure, we use the same notation to denote OQ and IQ as in
Section VI. The congestion that occurs at port C1 pauses the
corresponding IQ at port B1. Then the IQ qB1−{C1} pauses
IQ qA1−{C1}. When the queue length of qA1−{C1} reaches
kpause, it sends a pause frame with root ID C1 to port C1.
However, congestion root C1 does not react to the PAUSE
frame that carries the root ID identical to itself. Thus, for
Pyrrha, CBD never forms in this scenario. Although this may
result in packet loss on port A1, it is much less a threat to the
network performance than deadlock.

Scenarios where multiple flows’ routing forms a loop
sequentially. In this scenario, none of the flow forms a loop
by itself. But when multiple flows pass through different ports
one after another, a loop can occur. This kind of loop could
be attributed to rerouting due to link failure in tree-shape
topologies such as fat-tree and spine-leaf [78].

As shown in Figure 13, there are three flows in this scenario,
where F1, drawn by green solid line, passes through egress
ports A1, B1, and C2; F2, drawn by orange dashed line,
passes through egress ports B1, C1, and A2; F3, drawn by
green dotted-dashed line, passes through egress ports C1, A1,
and B2. Assuming that port C1 becomes congested first.

The reaction of PFC in this scenario is shown in Fig-
ure 13(a). Considering F2 passes through port C4 and C1
sequentially, the egress congestion at port C1 leads to the

ingress buffer counter rising at port C4. And a PAUSE frame
is sent to port B1 once the ingress buffer counter reaches
XOFF . Then the ingress buffer counter of port B4 increases
due to port B1 being paused. Similarly, the ingress buffer
counter of port A4 increases due to the pause of A1, and
finally a PAUSE frame is sent back to port C1. As we can see
in the figure, the CBD is formed among ports C1, C3, B1,
B3, A1, and A3, which indicates the existence of deadlock.

For BFC, the idea of isolating different flows in differ-
ent queues would have avoided deadlocks in this scenario.
However, considering the limited number of available queues,
the impact of the hash collision on BFC cannot be ignored.
Figure 13(b) shows the worst-case hash collision of BFC,
where all critical flows are hashed into a collision queue. It is
clear that the collision queues at ports A1, B1, and C1 form
a CBD.

Figure 13(c) shows the behavior of Pyrrha. In the beginning,
F2 and F3 are queued in OQ at port C1 (referred to as
qC1−{}). Once qC1−{} is congested, it sends PAUSE frames
to its upstream ports. Then a corresponding IQ qB1−{C1} is
assigned at port B1, and following arrival packets of F2 are
pushed into qB1−{C1}. F1 is pushed into the OQ qB1−{C1} at
port B1 directly since it does not pass through a downstream
congested root. Because of the competition for bandwidth
between IQ qB1−{C1} and OQ qB1−{}, both queues are subject
to queue buildup. A pause frame with root ID B1 is sent to
port A1 when the length of qB1−{} exceeds Kpause. Then
F1 is pushed into the IQ qA1−{B1} since it passes through
a downstream congestion root B1. Like qB1−{}, qA1−{} then
becomes congested and sends PAUSE frames to its upstream
port C1. Finally, the system converges to the state shown in
Figure 13(c). In the figure, we use colored arrows to represent
the buffer dependencies of the corresponding colored queues.
As we can see, there is no CBD in Pyrrha since every paused
queue eventually have buffer dependency on an OQ, which is
never dependent on other queues.

Other scenarios. Generally, to prove there is no deadlock
means to prove there is no CBD. In Pyrrha, there are two kinds
of queues, OQ and IQ. Only IQ could be paused, and each
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Fig. 14. Performance of FC. The deep/light color in the figures represents the average/99th-tail value for each bar.

IQ has its corresponding OQs. For any paused IQ in Pyrrha,
we can work out its buffer dependency chain and eventually
find an OQ at the end of the chain. Since OQ would not be
paused, i.e.c, it does not depend on any queues, any buffer
dependency chain in Pyrrha does not form a loop. In other
words, in general cases, there is no CBD (i.e.c, no deadlock)
in Pyrrha. And we are still trying to formalize the proof and
extend it to all scenarios.

VIII. SIMULATION EVALUATION

Topology. A non-blocking clos-network is used. It contains
4 core switches, 10 ToRs, and 160 hosts, similar to the
topology used in [42]). Each ToR is connected to its hosts
and cores via 100/400 Gbps links, respectively. The per-hop
propagation delay is 600ns. The base RTT is 5.1µs, and the
base BDP is 64KB. A 3-tier fat-tree topology with 1024 hosts
is also leveraged to investigate the scalability of Pyrrha.

Workloads. Under incastmix scenarios, flows following
a Poisson arrival process with a load of 0.8 and periodic
incast flows each composed of 30-40 MTUs with a load
of 0.5 are generated. An incast destination does not receive
Poisson arrival flows hence the traffic load does not exceed
link bandwidth. The incast degree is 720-to-1. For Poisson
arrival flows, three workloads are used [3], [42], [79], where
Memcached is composed of small flows, where most of the
flows are smaller than 1KB, and Web Server and Web Search
are large flows mixed with small flows where a small ratio of
large flows dominate the average flow size.

Parameters. There are two parameters of Pyrrha, i.e.c, the
threshold to pause (i.e.c, Kpause times one-hop BDP) and the
threshold to resume (i.e.c, Kresume times one-hop BDP). In our
evaluations, Kpause is set to 2, and Kresume is set to 1. Besides,
the maximum number of IQs can be used is set to 100, but
Pyrrha only uses a dozen of IQs in most cases. (We discuss
why these values are used in our conference paper [49]). The
switch buffer capacity is 20MB. Pyrrha uses shared buffer
mode. PFC uses dynamic threshold and α = 2.

Metrics. Average/99th-tail FCTs are evaluated. We monitor
the maximum buffer on each hop to investigate the composi-
tion of buffer reallocation that Pyrrha brings.

A. Comparing With Flow Control
In this section, we use large-scale NS3 simulations to

compare Pyrrha with existing flow control protocols (e.g., PFC
and BFC). For BFC, two versions with 32 and 128 queues per

port are used, as in its paper (e.g., BFC is used to denote BFC-
32). Figure 14 shows the FCT and throughput.

1) PFC: PFC hurts the performance of uncongested flows
since they can be paused innocently by their downstream ports
when incast occurs. This especially hurts the performance
of workloads that are composed of small flows (e.g., Mem-
cached). For Web Server workload, PFC even spreads the
congestion to the whole network thus background flows that
do not share the same destination pods of incast flows also
get hurt. The throughput performance depicted in Figure 14(f)
is a side note to this issue. For background flows, it achieves
stable high throughput until PFC pause frame storm occurs at
1.5ms. Then background flows endure a significant throughput
loss that lasts for about milliseconds.

2) BFC: BFC assigns flows to multiple queues according to
flow identifiers (FID) and hash functions. It can partially alle-
viate HOL blocking caused by congested flows and improve
the performance of uncongested flows to an extent compared to
PFC. However, HOL blocking occurs when congested flows
and uncongested flows share the same queue, or flows are
hashed into the same flow FIDs. Hence, BFC can not obtain
extremely low latency as Pyrrha does. Along with the number
of queues used by BFC increases, i.e.c, from 32 to 128, the
performance of BFC is improved. For Web Search workload,
the tail latency of BFC is not good because BFC sets a
relatively smaller threshold to detect congestion compared to
PFC. It can risk spreading congestion.

The third group of bars in Figure 14(a) shows the perfor-
mance of incast (congested) flows. More results of incast flows
are deferred to our conference paper [49]. Pyrrha does not
compromise the performance of incast flows compared to PFC.
BFC reduces the average FCT of incast flows because BFC
splits different flows into different queues and incast flows
may use several queues simultaneously. Incast flows can use
more bandwidth during the resume phase via the round-robin
scheduling mechanism among queues.

B. Additional Evaluations and Discussions

Performance under Large-scale Topology. To investigate
the scalability of Pyrrha, evaluations under k = 16 fat-tree
topology (i.e.c, 1024 hosts) is conducted. Figure 15 shows
the performance of different protocols under Web Server. We
analyze the results from two perspectives: (i) When comparing
FC with CC protocols, especially for flows smaller than
100KB, fine-grained FC protocols such as BFC and Pyrrha
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Fig. 15. FCT performance under k=16 fat-tree.

outperform PFC as well as CC protocols. This advantage is
attributed to the rapid response of fine-grained FC to network
congestion, which provides a degree of mitigation against
HOL blocking. (ii) In terms of cooperation between FC and
CC, as depicted in Figure 15(c), when Pyrrha is integrated with
CC, small flows can achieve the lowest latency. This is because
Pyrrha rapidly reacts to the network congestion, preventing
HOL blocking for traffic that has already been injected into the
network. Concurrently, CC addresses the persistent congestion
associated with larger flows.

Cooperating with congestion control. We evaluate the per-
formance of Pyrrha when integrated with congestion control
algorithms in detail. Our experiments demonstrate that Pyrrha
significantly improves the performance of uncongested flows
by quickly identifying and isolating incast flows. Specifically,
Pyrrha reduces the FCT of small flows (less than 100KB)
by up to 32.7× and substantially decreases buffer occupancy
at congestion roots through rapid and precise flow control.
For detailed experimental results, including DCQCN, HPCC,
TIMELY, and comprehensive results analysis in different sce-
narios, please refer to our conference paper [49].

Additional evaluations. In our conference paper [49], we
further evaluate Pyrrha under varying incast flow sizes, mul-
tiple congestion roots, interleaved MoE traffic, and dynamic
congestion root scenarios. We also compare Pyrrha with per-
flow queuing and CC without sending windows, analyze
parameter selection and merging mechanisms, and investi-
gate a single-tier queue variant. Additionally, we demonstrate
that Pyrrha complements adaptive load balancing scheme
(e.g., DRILL [67]) by addressing incast-induced congestion
while load balancing schemes handle path collision-induced
congestion.

Discussions. Discussions regarding how Pyrrha handles link
failures, as well as a review of related works, are put in our
conference paper [49].

IX. CONCLUSION

This paper was motivated for a labor division between
congestion control and flow control. It is time to embrace per-
hop flow control in datacenter networks to react to congestion
promptly. We presented Pyrrha, a congestion-root-based per-
hop flow control. It controls the transmission of flows at
a fine granularity without congestion spreading, requiring a
minimum number of queues. The performance of flows can
be significantly improved. We are currently discussing with a
major vendor the implementation of Pyrrha in its products.
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